
Vitamin D supplementation strategies for India

Ambrish Mithal MD, DM
President Endocrine Society of India

Global status

Map View: Robinson Projection

Vitamin D deficiency/ insufficiency is a big challenge globally

more so in India!

What is the way out??

Is it sunlight?

Is it food- natural or fortified?

Is it supplementation?

Effect of UV light on serum 25(OH)D levels

25-Hydroxyvitamin [25(OH)D] concentrations under sun-rich living conditions

Reference, year, and subjects	Location	25(OH)D
		nmol/L
Haddock et al (23), 1982	Puerto Rico	
Hospital personnel $(n = 26)$		105
Farmers $(n = 18)$		135
Haddad and Kyung (24), 1971	St Louis	
Lifeguards $(n = 9)$		163
Better et al (25), 1980	Israel	
Lifeguards $(n = 34)$		148

Highest individual serum 25(OH)D levels obtained from sunshine: 225 nmol/l

Vitamin D photosynthesis in Indians

- Indian "pigmented" skin is capable of making Vitamin D but requires longer exposure/ greater UV dose.. (Holick)
- Highest levels in unsupplemented adult Indians about 20 ng/ml (in security forces)
- Mean levels vary between 5 to 15 ng/ml.

Fortification???

Many issues...

Choice of vehicle

How much will get in, will it be enough?

Logistics of fortification, monitoring...

Vitamin D intake needed to achieve optimal 25 OH D level (Dawson Hughes et al, 2005)

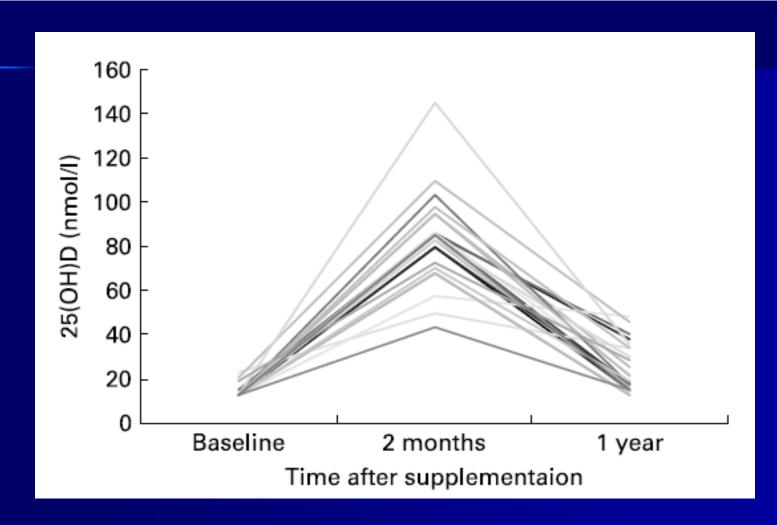
- Increment inversely related to initial 25OHD level
- 40 IU (1 mcg) daily raises 250HD by
 - 1.2 nmol (or 0.5 ng/ml) if deficient
 - -0.7 nmol (or 0.3ng/ml) if basal >70nmol

Dose recommended 800 units /day Is it adequate for Indians???

Vitamin D intake to attain a desired serum 25(OH)D status Aloia et al, AJCN, 2008, 1952

- 6 month randomized double blind study- n=138
- Dose adjustment every 2 months
- Target 75 nmol/l; max 220 nmol/l
- Dose required 3800-5000 units/day!!

■ If the typical serum 25 (OH)D level in Indians is 10 ng/ml...


And if the target serum 25 (OH)D level is 30 ng/ml...

It would require about 2000 iu/day.....

- The usual calcium pill has 200 iu of vitamin D
- 2 pills a day equals 400 iu/day
- Grossly inadequate!!
- Studies underway with calcium pills containing 500 iu vit D (1000 iu/day)

Indian studies

Pattern of 25-hydroxy vitamin D response at short (2 month) and long (1 year) interval after 8 weeks of oral supplementation with cholecalciferol in Asian Indians with chronic hypovitaminosis D

Pattern of 25-hydroxy vitamin D response at short (2 month) and long (1 year interval after 8 weeks of oral supplementation with cholecalciferol in Asian Indians with chronic hypovitaminosis D

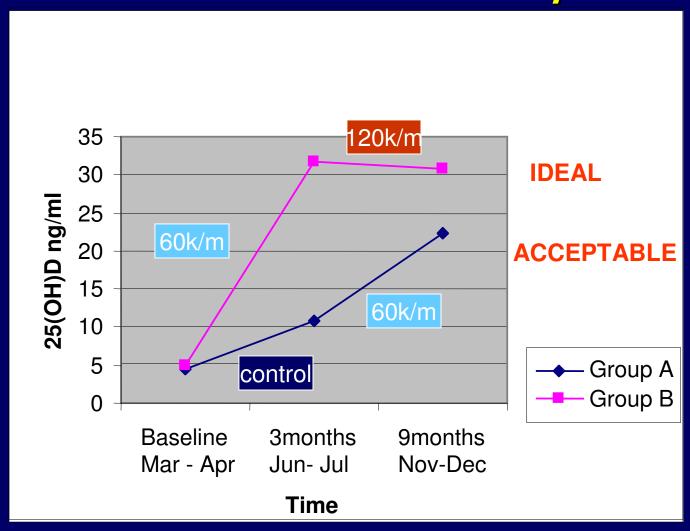
Supplemented with 60,000 IU weekly + 1 g elemental calcium daily for 8 weeks

Table 1. Change in serum Ca, 25-hydroxy vitamin D (25(OH)D) and intact PTH (iPTH) after cholecalciferol (1500 μg (60 000 IU)/week) and Ca (1g/d) supplementation*

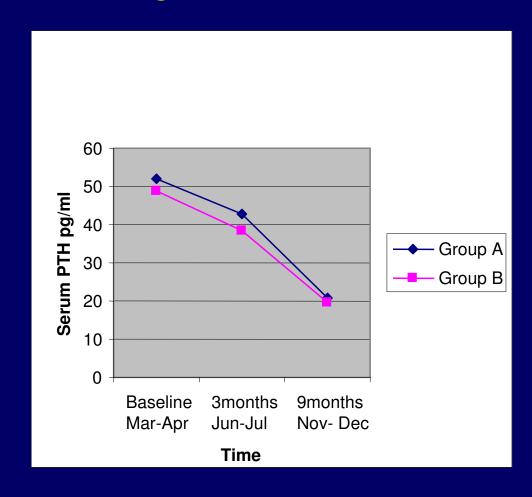
(Mean values and standard deviations)

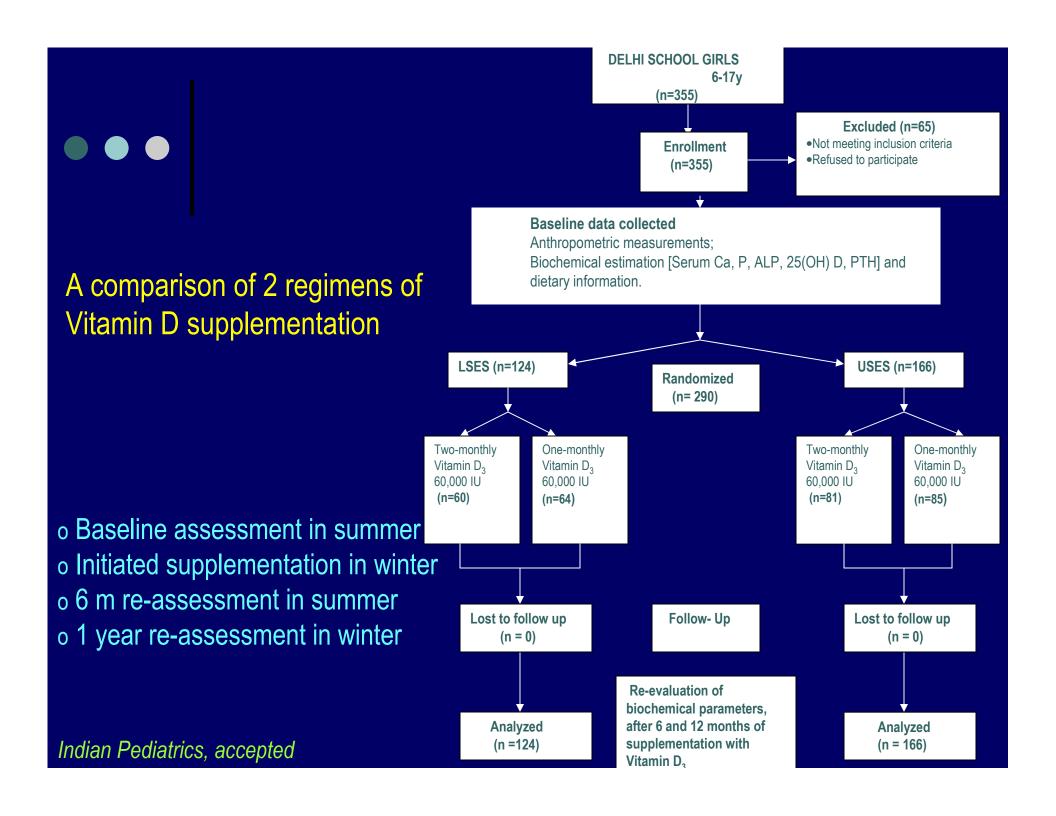
	Baseline		After 8 weeks of supplementation			
	(pre-supple		8 we	eks	12 mg	onths
Parameters	Mean	SD	Mean	SD	Mean	SD
Serum total Ca (mmol/l)	2.27	0.22	2.22	0.17	2.34	0.17
Serum inorganic P (mg/dl)	1.32	0.13	1.42 ^a	0.13	1⋅29 ^b	0.13
Serum alkaline phosphatase (IU/I)	300	118	253	78	252	100
25(OH)D (nmol/l)	13.5	3.0	82·4 ⁹	20.7	24·7 ⁵	10.9
Serum iPTH(ng/l)	54ª	40	29°	20	72ª	32
Supranormal PTH (n, %)	7 out of 23	3 (30.4%)	0 out of	23 (nil)	14 out of 2	3 (60.1 %)

- At 8 weeks. 22 of 23 subjects had 25(OH)D values ≥ 50 nmol/l
- At 1 year all subjects were vitamin D deficient


Effect of vitamin D supplementation in young Indian women

60000- 120000 units cholecalciferol/month



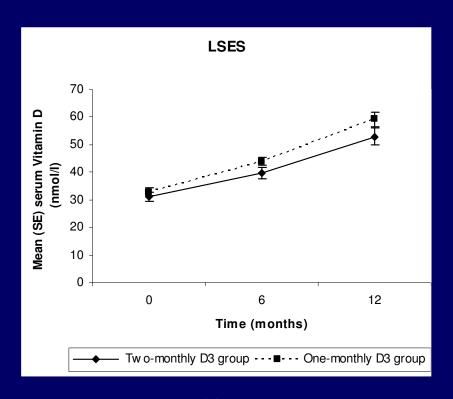

Malhotra N ,, Mithal A, Arch Osteoporosis 2009

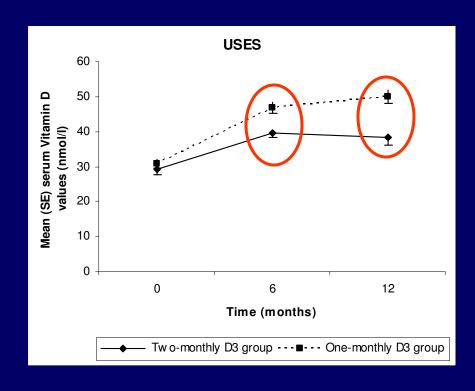
Effect of vitamin D supplementation in young Indian women 60000- 120000 units cholecalciferol/month

Change in PTH levels

Effect of Vitamin D supplementation on serum 25(OH)D (nmol/l) in LSES and USES subjects, at different time points

	0 (Summer)	6 months (S)	12 months (W)
<u>LSES</u>			
2 monthly D3	31.2 ±1.68	39.5 ±2.01*	53.0 ±3.05 ^{#,\$}
1 monthly D3	32.9 ±1.37	43.9 ±1.5*	59.3 ±2.64 #,\$
<u>USES</u> @			
2 monthly D3	29.1 ±1.54	39.5±1.24*	38.2 ±2.13 #
1 monthly D3	30.8 ±1.39	46.8 ±1.45*	49.9 ±2.01 #


Mean diff between 2 monthly and 1 monthly groups statistically significant


Maalouf et al, 2008: 14,000 IU weekly resulted in increase from 32 to 95 nmol/l

^{* =} P<0.05 for baseline vs. 6 month; # = P<0.05 for baseline vs. 12 month; \$ = P<0.05 for 6 months vs. 12 month

Indian Pediatrics, accepted

Baseline: 93.7 % school girls were vitamin D deficient [25 (OH) D < 50 nmol/L].

Despite supplementation with 60,000 IU of Vitamin D3 (monthly or two-monthly) only 67.8% LSES and 31.9% USES were vitamin D sufficient at the end of one year.

Supplementation - effect on maternal vitamin D, neonatal anthropometry and Ca

	Group A (no vitamin D) (n = 14)	Group B (one dose of 60 000 U vitamin D) (n = 35)	Group C (two doses of 120 000 U vitamin D each) (n = 35)	P-value
Baseline 25OHD (nmol/l)	25.8 (18.9–30.7)*	33.4 (22.6–47.7)	40.1 (26.9–58.4)	< 0.01
25OHD at delivery (nmol/l)	23.8 (17.2-32.6)	30.9 (24.8-48.1)	53.4 (41.2-88.0) [†]	< 0.001
Serum calcium at delivery (mmol/l)	2.31 ± 0.18	2.28 ± 0.27	2.29 ± 0.21	0.41
Increment of 25OHD (nmol/l)	0.4 (-6.5-16.8)	-2.1 (-10.7-13.1)	13.4 (0.2-42.0) [‡]	< 0.01
25OHD >80 nmol/l at delivery (nmol/l)	1/14 (7%)	2/35 (5.7%)	12/35 (34.2%)	0.003
25OHD at delivery conducted in winter (nmol/l)	14.9 (n=1)	26.9 (22.9-33.3) (n=11)	43.7 (35.3-62.0) (n=14)	< 0.01§
25OHD >80 nmol/l at delivery in winter	0/1	0/11	3/14 (21%)	0.23

Anthropometric indices: Differences persisted at 9 months

Parameter	Group A	Group B	Group C	р
Head circ (cm)	33.6 ± 0.8	34.4 ± 0.6	34.5 ± 0.9	0.000
Length (cm)	49.4 ± 2.4	50.1 ± 0.9	50.3 ± 0.9	0.000
Weight (kg)	2.8 ± 0.4	3.0± 0.4	3.1± 0.4	0.003

Sahu et al, EJCN, 2009

Conclusions

- Starvation amidst plentyabundant sunshine, low 25 OHD levels!!
- Can sunshine be enough for high risk groups ?? Probably not!!
- Fortification ???
- More widespread advocacy of supplementation???
- Need about 2000 units/day in susceptible groups...